梅晓光

部门: 通信工程系
姓名: 梅晓光
邮箱: meixiaoguang#gmail.com
性别:
职称: 专职科研岗
学历学位: 博士
导师类型:
办公电话:
通信地址: 武汉大学电子信息学院213室
邮政编码:
主要经历:
学习经历: 2003.9-2007.6 华中科技大学 通信工程 学士
2008.9-2011.6 华中师范大学 通信与信息系统 硕士
2012.9-2016.3 华中科技大学 电路与系统 博士

任职经历: 2010.10-2012.7 中国船舶重工集团公司第七二二研究所 嵌入式软件工程师
2016.5-至今 武汉大学电子信息学院 专职科研岗
主讲课程:
本科生课程:  
研究生课程:  
科学研究:
主要研究方向: 高/超光谱数据处理、红外图像处理、模式识别与机器学习
主要科研课题及项目: 主持:
1. 军委科技委前沿创新计划先进仿生系统主题:仿生跳跃机器人三维视觉感知技术研究,2017-2018
2. 装备预研教育部联合基金青年人才项目:无人机红外-可见光融合图像超分辨率对地目标探测技术,2018-2020
3. 中国博士后科学基金:基于贝叶斯网络的高光谱盲解混方法研究,2017-2018
4. 中央高校自主科研项目:OP/FT-IR温室气体定量快速反演方法研究,2017-2018
--
参与:
5. 军委科技委前沿创新计划:****目标多波段实时融合探测技术,2017-2019
6.“十三五”装备预研共用技术:****处理模块技术,2016-2020
7. 军委科技委前沿创新计划:****尾迹多阵列红外探测,2017-2018
8.“十三五”海军装备预研创新:****目标探测技术,2017-2018
9.“十三五”装备预研领域基金:高性能红外-可见光融合探测技术,2017-2019
10.“十三五”装备预研领域基金:一种基于红外超光谱谱指纹检测的新型光电探测感知技术,2016-2018
11. 智能机器人与系统高精尖创新中心开放基金:可见光/红外图像融合的智能机器人感知系统,2017-2018
主要论文及著作:
论文:
[1] X. Mei, Y. Ma, C. Li, F. Fan, J. Huang, and J. Ma, "Robust GBM hyperspectral image unmixing with superpixel segmentation based low rank and sparse representation," Neurocomputing, vol. 275, pp. 2783-2797, 2018. (SCI, IF=3.317, 二区)
[2] Y. Ma, C. Li, X. Mei*, C. Liu, and J. Ma, "Robust Sparse Hyperspectral Unmixing With l2,1 Norm," IEEE Transactions on Geoscience and Remote Sensing, vol. 55, pp. 1227-1239, 2017. (SCI, IF=4.942, 二区)
[3] X. Mei, Y. Ma, F. Fan, C. Li, C. Liu, J. Huang, and J. Ma, "Infrared ultraspectral signature classification based on a restricted Boltzmann machine with sparse and prior constraints," International Journal of Remote Sensing, vol. 36, pp. 4724-4747, 2015. (SCI, IF=1.724, 三区)
[4] X. Mei, Y. Ma, C. Li, F. Fan, J. Huang, and J. Ma, "A Real-Time Infrared Ultra-Spectral Signature Classification Method via Spatial Pyramid Matching," Sensors, vol. 15, pp. 15868-15887, 2015. (SCI, IF=2.677, 三区)
[5] C. Li, Y. Ma, X. Mei*, F. Fan, J. Huang, and J. Ma, "Sparse Unmixing of Hyperspectral Data with Noise Level Estimation," Remote Sensing, vol. 9, 2017. (SCI, IF=3.244, 二区)
[6] H. Guo, Y. Ma, X. Mei*, and J. Ma, "Infrared and visible image fusion based on total variation and augmented Lagrangian," Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 34, pp. 1961-1968, 2017. (Editors’Pick, SCI, IF=1.621, 三区)
[7] F. Fan, Y. Ma, C. Li, X. Mei, J. Huang, and J. Ma, "Hyperspectral image denoising with superpixel segmentation and low-rank representation," Information Sciences, vol. 397, pp. 48-68, 2017. (SCI, IF=4.832, 一区)
[8] C. Li, Y. Ma, X. Mei, C. Liu, and J. Ma, "Hyperspectral Unmixing with Robust Collaborative Sparse Regression," Remote Sensing, vol. 8, 2016. (SCI, IF=3.244, 二区)
[9] C. Li, Y. Ma, X. Mei, C. Liu, and J. Ma, "Hyperspectral Image Classification With Robust Sparse Representation," IEEE Geoscience and Remote Sensing Letters, vol. 13, pp. 641-645, 2016. (SCI, IF=2.761, 三区)
[10] Y. Ma, C. Li, H. Li, X. Mei, and J. Ma, "Hyperspectral Image Classification with Discriminative Kernel Collaborative Representation and Tikhonov Regularization," IEEE Geoscience and Remote Sensing Letters, 2018. (SCI, IF=2.761, 三区)
[11] J. Huang, Y. Ma, X. Mei, and F. Fan, "A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA," Infrared Physics & Technology, vol. 79, pp. 68-73, 2016. (SCI, IF=1.731, 三区)
[12] C. Li, Y. Ma, J. Huang, X. Mei, and J. Ma, "Hyperspectral image denoising using the robust low-rank tensor recovery," Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 32, pp. 1604-1612, 2015. (SCI, IF=1.621, 三区)
[13] C. Li, Y. Ma, J. Huang, X. Mei, C. Liu, and J. Ma, "GBM-Based Unmixing of Hyperspectral Data Using Bound Projected Optimal Gradient Method," IEEE Geoscience and Remote Sensing Letters, vol. 13, pp. 952-956, 2016. (SCI, IF=2.761, 三区)
[14] J. Han, Y. Ma, J. Huang, X. Mei, and J. Ma, "An Infrared Small Target Detecting Algorithm Based on Human Visual System," IEEE Geoscience and Remote Sensing Letters, vol. 13, pp. 452-456, 2016. (SCI, IF=2.761, 三区)
[15] J. Huang, Y. Ma, F. Fan, X. Mei, and Z. Liu, "A scene-based nonuniformity correction algorithm based on fuzzy logic," Optical Review, vol. 22, pp. 614-622, 2015. (SCI, IF=0.6, 四区)
[16] Y. Ma, J. Wang, H. Xu, S. Zhang, X. Mei, and J. Ma, "Robust Image Feature Matching via Progressive Sparse Spatial Consensus," IEEE Access, vol. 5, pp. 24568-24579, 2017. (SCI, IF=3.244, 三区)
[17] T. Tian, X. Mei, Y. Yu, C. Zhang, and X. Zhang, "Automatic visible and infrared face registration based on silhouette matching and robust transformation estimation," Infrared Physics & Technology, vol. 69, pp. 145-154, 2015. (SCI, IF=1.731, 三区)
[18] B. Zhou, S. Wang, Y. Ma, X. Mei, B. Li, H. Li, and F. Fan, "An infrared image impulse noise suppression algorithm based on fuzzy logic," Infrared Physics & Technology, vol. 60, pp. 346-358, 2013. (SCI, IF=1.731, 三区)
--
发明专利:
1. 一种基于边界投影最优梯度的高光谱非线性解混方法, 2015.12.9, CN201510700049.2
2. 基于局部线性迁移和刚性模型的图像特征匹配方法及系统, 2016.4.6
3. 基于局部线性迁移的非刚性变换图像特征匹配方法及系统, CN201510801246.3
其它:
获奖情况: 1. 2016年中国自动化学会自然科学二等奖, 排名第四
2. 2015博士研究生国家奖学金
主要社会及学术兼职: 学术服务:
IEEE Trans. on Geoscience and Remote Sensing
Information Sciences
International Journal of Remote Sensing
IEEE Geoscience and Remote Sensing Letters
Infrared Physics & Technology
Journal of Selected Topics in Applied Earth Observations and Remote Sensing审稿人
--
实验室网站:http://mvp.whu.edu.cn
Google Scholar:https://scholar.google.com/citations?user=2rgDpugAAAAJ&hl=zh-CN
所带研究生情况:  


© CopyRight 2010-2012 武汉大学电子信息学院 版权所有 © 2003-2005 技术支持:武汉楚玖科技有限公司